CNCM Online Round 3

naman12
November 8, 2020

Contents

Problem 1 1
Problem 2 2
Problem 3 3
Problem 4 4
Problem 5 5
Problem 6 6
Problem 7 8

Problem 1

Problem

Harry, who is incredibly intellectual, needs to eat carrots C_{1}, C_{2}, C_{3} and solve Daily Challenge problems D_{1}, D_{2}, D_{3}. However, he insists that carrot C_{i} must be eaten only after solving Daily Challenge problem D_{i}. In how many satisfactory orders can he complete all six actions?

Solution

There are $6!=720$ possible permutations of $C_{1}, C_{2}, C_{3}, D_{1}, D_{2}, D_{3}$. However, only looking at D_{1} and C_{1}, there exists exactly one permutation (out of the two possible) that makes sense - namely,

$$
D_{1} \quad C_{1}
$$

Thus, there is a $\frac{1}{2}$ chance this happens. The same thing happens with $D_{2}, D_{3}, C_{2}, C_{3}$, so thus we get that only $\frac{1}{8}$ of the permutations will work. This gives

$$
720 \cdot \frac{1}{8}=90
$$

such permutations.

Problem 2

Problem

Consider rectangle $A B C D$ with $A B=6$ and $B C=8$. Pick points E, F, G, H such that the angles $\angle A E B, \angle B F C, \angle C G D, \angle A H D$ are all right. What is the largest possible area of quadrilateral $E F G H$?

Solution

Note that the condition $\angle A E B=90^{\circ}$ means that E lies on the circle diameter $A B$, and similarly with F, G, H. Thus we can get

$$
[E F G H]=\frac{E G \cdot F H \cdot \sin \angle(E G, F H)}{2}
$$

where $\angle(E G, F H)$ is the angle formed by those lines (does not matter which one, as $\sin x=\sin 180^{\circ}-$ $x)$. However, we know that $E G \leq 3+3+8$ and $F H \leq 4+4+6$, so thus

$$
[E F G H] \leq \frac{14 \cdot 14 \cdot 1}{2}=\mathbf{9 8}
$$

Equality is achievable when $A E B, B F C, C G D, D H A$ are all isosceles, or $E F G H$ is a square.

Problem 3

Problem

Let $a_{1}=1$ and $a_{n+1}=a_{n} \cdot p_{n}$ for $n \geq 1$ where p_{n} is the nth prime number, starting with $p_{1}=2$. Let $\tau(x)$ be equal to the number of divisors of x. Find the remainder when

$$
\sum_{n=1}^{2020} \sum_{d \mid a_{n}} \tau(d)
$$

is divided by 91 for positive integers d. Recall that $d \mid a_{n}$ denotes that d divides a_{n}.

Solution

We can note that this is very vacuously defined - for any $n \geq 2$, we have

$$
a_{n}=\prod_{k=1}^{n-1} p_{k}
$$

where p_{i} the sequence of increasing primes, as in the problem. Thus, we get a_{n} is squarefree, so it has 2^{n} divisors. Now, consider some divisor of a_{n} with k prime factors. Then, there are a total of $\binom{n-1}{k}$ possible choices for that divisor, which has 2^{k} divisors. Thus, we get

$$
\sum_{d \mid a_{n}} \tau(d)=\sum_{k=0}^{n-1}\binom{n-1}{k} 2^{k}=3^{n-1}
$$

by the binomial formula. Thus, we get

$$
\sum_{n=1}^{2020} \sum_{d \mid a_{n}} \tau(d)=\sum_{n=1}^{2020} 3^{n-1}=\frac{3^{2020}-1}{3-1}
$$

Note that $\varphi(91)=6 \cdot 12=72$, and thus we get

$$
3^{2016} \equiv\left(3^{72}\right)^{28} \equiv 1^{28} \equiv 1 \quad(\bmod 91)
$$

so thus the answer is equivalent $(\bmod 91)$ to

$$
\frac{3^{2020}-1}{3-1} \equiv \frac{3^{4}-1}{3-1}=40
$$

Problem 4

Problem

Hari is obsessed with cubics. He comes up with a cubic with leading coefficient 1, rational coefficients and real roots $0<a<b<c<1$. He knows the following three facts: $P(0)=-\frac{1}{8}$, the roots for a geometric progression in the order a, b, c, and

$$
\sum_{k=1}^{\infty}\left(a^{k}+b^{k}+c^{k}\right)=\frac{9}{2}
$$

The value $a+b+c$ can be expressed as $\frac{m}{n}$, where m, n are relatively prime positive integers. Find $m+n$.

Solution

We note that $-\frac{1}{8}=P(0)=(0-a)(0-b)(0-c)=-a b c=-b^{3}$, so thus $b=\frac{1}{2}$. Now, we note that

$$
\sum_{k=1}^{\infty} a^{k}=\frac{a}{1-a}
$$

and similarly with b, c. Thus, we get that

$$
\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{9}{2}
$$

Then, we get that $a c=\frac{1}{4}$, so thus $c=\frac{1}{4 a}$. Thus, we get

$$
\frac{a}{1-a}+1+\frac{1 / 4 a}{1-1 / 4 a}=\frac{a}{1-a}+1+\frac{1}{4 a-1}=\frac{9}{2}
$$

Thus, we get that

$$
\frac{4 a^{2}-2 a+1}{-4 a^{2}+5 a-1}=\frac{7}{2}
$$

or equivalently

$$
8 a^{2}-4 a+2=-28 a^{2}+35 a-7
$$

It's possible to solve this to get $a=\frac{1}{3}, \frac{3}{4}$. However, we get that by Vieta's formulas that the sum of the two possible values of a are $\frac{13}{12}$, making $a+b+c=\frac{19}{12}$. Thus, the sum is $\mathbf{3 1}$.

naman12

Problem 5

Problem

How many positive integers N less than 10^{1000} are such that N has x digits when written in base ten and $\frac{1}{N}$ has x digits after the decimal point when written in base ten? For example, 20 has two digits and $\frac{1}{20}=0.05$ has two digits after the decimal point, so 20 is a valid N .

Solution

We note that if N works, so does $10 N$. Thus, it suffices to check powers of 2 and 5 (the decimals have to terminate, clearly).

We note that $\frac{1}{2^{k}}$ has exactly k digits after the decimal point, so we need 2^{k} to have exactly k digits. However, we can verify the inequality

$$
2^{k}<10^{k-1}
$$

for $k \geq 2$, with the case $k=2$ being clear and then inducting on k. Thus, only 2 works (note 1 trivially fails). Similarly, if we do the exact same thing with 5^{k}, we get the inequality

$$
5^{k}<10^{k-1}
$$

for $k \geq 4$. Thus, the only powers of 5 that can work are $5,25,125$. However, we can multiply by powers of 10 - we can multiply 2 by any power of 10 from 10^{0} to 10^{1000}. We can do the same thing to 5 . For 25 , the powers of 10 are 10^{0} to 10^{999}, while for 125 , the valid powers of 10 are from 10^{0} to 10^{998}. Thus the answer is $1000+1000+999+998=3997$.

naman12

Problem 6

Problem

Triangle $A B C$ has side lengths $A B=13, B C=14$, and $C A=15$. Let Γ denote the circumcircle of $\triangle A B C$. Let H be the orthocenter of $\triangle A B C$. Let $A H$ intersect Γ at a point D other than A. Let $B H$ intersect $A C$ at F and Γ at a point G other than B. Suppose $D G$ intersects $A C$ at X. Compute the greatest integer less than or equal to the area of quadrilateral $H D X F$.

Solution

We will rename some points. Let D be the foot from A to $B C, E$ the foot from B to $C A$, and F the foot from C to $A B$. Let the intersection of line $A H D$ with Γ be H_{A}, and intersection of line $B H E$ with Γ be H_{B}. Let X be the intersection of $H_{A} H_{B}$ and $A C$. Our goal is to compute the floor of the area of $H H_{A} H_{B} X$.

It is common knowledge that H_{A} is the reflection of H over D, and H_{B} the reflection of H over E. Indeed, note that

$$
\measuredangle H_{A} B C=\measuredangle H_{A} A C=90^{\circ}-\measuredangle A C B=\measuredangle C B H
$$

implying the conclusion. The same angle chase resolves the scenario for H_{B}. Now, we can note that $E H D C$ is cyclic, so thus $\angle H E D=\angle H C D=90^{\circ}-\angle B$. However, by our reflection claim, we get that $\triangle H D E \sim \triangle H H_{A} H_{B}$ (by SAS similarity) and thus $\angle H H_{B} X=90^{\circ}-\angle B$. Now, we move on to the computations.

First, we write down

$$
\left[H H_{A} X E\right]=\left[H H_{A} H_{B}\right]-\left[H_{B} E X\right]
$$

To compute the first area, we note that

$$
\left[H H_{A} H_{B}\right]=\frac{H H_{A} \cdot H H_{B} \cdot \sin \angle H_{B} H H_{A}}{2}=2 H D \cdot H E \cdot \sin \angle C
$$

We can compute that by Heron's Formula,

$$
s=\frac{13+14+15}{2}=21 \quad[A B C]=\sqrt{s(s-a)(s-b)(s-c)}=\sqrt{8 \cdot 7 \cdot 6 \cdot 21}=84
$$

Thus, we can get

$$
\begin{aligned}
& \sin C=\frac{2[A B C]}{a b}=\frac{4}{5} \\
& \sin B=\frac{2[A B C]}{a c}=\frac{12}{13} \\
& \sin A=\frac{2[A B C]}{b c}=\frac{56}{65}
\end{aligned}
$$

In addition, we get

$$
B D=A B \cos \angle B=13 \cdot \frac{5}{13}=5
$$

and thus

$$
H D=\frac{B D}{\tan \angle C}=\frac{5}{4 / 3}=\frac{15}{4}
$$

Similarly, we can obtain

$$
C E=B C \cos \angle C=14 \cdot \frac{3}{5}=\frac{42}{5}
$$

and thus

$$
H E=\frac{C E}{\tan \angle A}=\frac{42 / 5}{56 / 33}=\frac{99}{20}
$$

Thus, we can finally calculate

$$
\left[H H_{A} H_{B}\right]=2 \cdot \frac{99}{20} \cdot \frac{15}{4} \cdot \frac{4}{5}=\frac{297}{10}
$$

Now, to calculate the last part, note that

$$
\left[H_{B} E X\right]=\frac{H_{B} E \cdot E X}{2}=\frac{H_{B} E^{2}}{2 \tan \angle B}=\frac{H E^{2}}{2 \tan \angle B}=\frac{3267}{640}
$$

Now, to finish off, we get that our answer is $24 \frac{381}{640}$, giving the floor as $\mathbf{2 4}$.

Problem 7

Problem

A subset of the nonnegative integers S is said to be a configuration if $200 \notin S$ and for all nonnegative integers $x, x \in S$ if and only if both $2 x \in S$ and $\left\lfloor\frac{x}{2}\right\rfloor \in S$. Let the number of subsets of $\{1,2,3, \ldots, 130\}$ that are equal to the intersection of $\{1,2,3, \ldots, 130\}$ with some configuration S equal k. Compute the remainder when k is divided by 1810 .

Solution

Evens are dumb, as if $2 x \in S, x \in S$. So we only look at odd numbers. This also means we rewrite $200 \notin S$ as $25 \notin S$.

Now, we note that if we have an element in $S, 1 \in S$ because repeatedly dividing by 2 will get you a 1 . Now, we start with 1 and build up. We consider a rooted tree (root 1). But how does the tree work?

We actually consider how far away from 1 it is (how many +1 we have to do). Thinking of it as an option to either do $2 x$ or $2 x+1$, we consider how many of the latter we perform. For example, the first two rows of the tree looks like:

Now, let's count from right to left. 129 has 2 options - in or not. 65 has 2 options as well, as all its children are greater than 130. However, 33 has a child node:

Thus, there are 3 options: nothing, 33, and 33, 67 . Similarly, 17 has 2 children nodes:

35 has three options of where to belong, but 69 has only two (from our work on 33 and 65). Thus, we get $1+2 \cdot 3=7$ possible ways we can look at the 17 sub-branch. I'll draw the tree once more for 9 before stopping:

However, it's easy to see how this generalizes: 9 has

$$
2 \cdot 3 \cdot 7+1=43
$$

possible appearances, while 5 has

$$
2 \cdot 3 \cdot 7 \cdot 43+1=1807 \equiv-3 \quad(\bmod 1810)
$$

possible appearances. If we were careless, we would apply the same procedure to 3 . However, we need to account for $25 \notin S$. We can note that $3 \cdot 8+1=25$, so 25 is a (direct) child of 3 . In particular, 25 has the exact same child structure as 17 , so we can instead say that for 3 , we have

$$
2 \cdot 3 \cdot 43 \cdot 1807+1 \equiv 258 \cdot(-3)+1 \equiv 1037 \quad(\bmod 1810)
$$

possible appearances. Thus, our answer is

$$
2 \cdot 2 \cdot 3 \cdot 7 \cdot 43 \cdot 1807 \cdot 1037+1 \equiv 24 \cdot 1037+1 \equiv 1359 \quad(\bmod 1810)
$$

naman12

